The Technology Authority

quantum computers hacking bitcoin wallets

Intel’s 17-qubit quantum test chip.

Source: Intel

Stefan Thomas really could have used a quantum computer this year.

The German-born programmer and crypto trader forgot the password to unlock his digital wallet, which contains 7,002 bitcoin, now worth $265 million. Quantum computers, which will be several million times faster than traditional computers, could have easily helped him crack the code.

Though quantum computing is still very much in its infancy, governments and private-sector companies such as Microsoft and Google are working to make it a reality. Within a decade, quantum computers could be powerful enough to break the cryptographic security

Read More

Organizations are preparing for cyberattacks from quantum computers

Amidst the houses and the car parks sits GCHQ, the Government Communications Headquarters, in this aerial photo taken on October 10, 2005.

David Goddard | Getty Images

LONDON — A little-known U.K. company called Arqit is quietly preparing businesses and governments for what it sees as the next big threat to their cyber defenses: quantum computers.

It’s still an incredibly young field of research, however some in the tech industry — including the likes of Google, Microsoft and IBM — believe quantum computing will become a reality in the next decade. And that could be worrying news for organizations’ cyber

Read More

How to prepare your firm for the quantum computer revolution

• The impact of quantum computing on internet security will be so great we must start planning now.

• Its exponentially higher processing power will render widely used cryptography obsolete.

• ‘Security agility’ – crypto agility – is a key concept in being quantum-ready.

Strategic thinking has enabled many of mankind’s greatest successes. But when some leaps are just too big for a single bound, or seem too far into the future, strategic acting – incremental, consistent decision-making consistent with a long-term vision – can serve as an enabler for future success.

While an operationally viable quantum computer seems beyond

Read More

A student’s physics project could make quantum computers twice as reliable

A student’s tweak in quantum computing code could double its ability to catch errors, piquing the interest of Amazon’s quantum computing program. 

The new code could be used to build quantum computers that live up to the promises of lightning-fast processing time and the ability to solve more complex problems than traditional computers could handle. So far, only two computers have reached “quantum supremacy,” or the ability to complete a quantum calculation faster than the fastest supercomputer. But neither of those computers used error correction codes that will be necessary to scale up quantum computing for widespread, reliable use, the

Read More

Faster, Larger Quantum Computers, Tricked-Out With Qubits Comprised of Holes

By

Electron holes could be the solution to operational speed/coherence trade-off.

A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer.

Quantum computers are predicted to be much more powerful and functional than today’s ‘classical’ computers.

One way to make a quantum bit is to use the ‘spin’ of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields,

Read More

Tech It Out: What’s under the hood of a quantum computer?

Leading scientists have been seeking a new holy grail – “quantum supremacy.” The term “quantum supremacy” does not indicate any technological superiority of one country over another, but rather the enormous computing advantage of quantum computers over classical computers, the latter can vary from the office laptop you type on to those supercomputers that require an entire building to house.

The basic computing increment inside a classical computer is called a “bit,” which is based on a binary system that is either 0 or 1. These 0s and 1s constitute the basic bits.

A classical computer can only generate one

Read More